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Synchronization of chaos and hyperchaos using linear and nonlinear feedback functions
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Using the method of variable feedback, synchronization of chaotic and hyperchaotic systems is presented.
The robustness of the method based on the flexibility of choices of feedback functions is exemplified. Linear
and nonlinear feedback functions and their linear superpositions are used for synchronization. Calculations
with model systems indicate that functions constructed by linear superposition of feedback functions that
independently synchronize a system are more efficient in achieving synchronization than the functions from
which they are made. We have not noticed any difference in the technique of synchronization based on the
number of positive Lyapunov exponents.@S1063-651X~97!09605-0#

PACS number~s!: 05.45.1b, 89.70.1c, 43.72.1q, 47.52.1j
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I. INTRODUCTION

Quite recently, synchronization of chaos and hyperch
has received increasing attention from foundational as w
as applied points of view@1–9#. Systems with more than on
positive Lyapunov exponent are called hyperchaotic@10#.
For bounded flows, chaos and hyperchaos can exist on
the minimum dimensions of dynamical systems are 3 an
respectively. Examples of systems having chaos and hy
chaos can be found in systems@1–14# such as arrays o
Josephson junctions, coupled electric oscillators, artifi
neural networks, arrays of chaotic systems, multimode
sers, and coupled map lattices. The importance of a pro
understanding of control and synchronization of chaotic s
tems originates from the fact that in the classical world ch
is ubiquitous. Synchronization of chaos has been studie
the light of technical applications such as secure comm
cations@1,2,4–6#. It is very likely that control and synchro
nization of chaos and hyperchaos play important roles in
workings of biological and artificial neural networks. A
though some progress has been made, an all-embracing
fied method for synchronization of chaos and hyperchao
missing. Kocarev and Parlitz@4,5# and Penet al. @6# have
recently studied synchronization of high-dimensional s
tems in which the transmitted signal is hyperchaotic. It
believed that communications via hyperchaotic signals
more secure and the procedure relates to the design of c
munication schemes. Synchronization of hyperchaotic s
tems has therefore become a new area of active rese
One way to construct hyperchaotic systems is to couple l
dimensional chaotic~hyperchaotic! systems@4,5,11#. A sys-
tem built by coupling simpler chaotic~hyperchaotic! systems
may behave@5# as a single chaotic or hyperchaotic syste
with new and rich dynamic behavior or it may behave
clusters of chaotic~hyperchaotic! systems or it may even
exhibit the behaviors of an assembly of individual chao
~hyperchaotic! systems. Quite often, a complex physical
biological system can be described in terms of the behav
of simpler chaotic~hyperchaotic! systems through a mecha
nism dubbeddynamic dissipation@7,11#. In this work, we
551063-651X/97/55~5!/5285~6!/$10.00
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study synchronization of chaos and hyperchaos using
method of variable feedback control. So far, this method
been used primarily with linear feedback functions. We
cus on linear and and nonlinear feedback functions and t
superposition. Since feedback functions are not unique,
may ask questions such as the following:~i! If two vector
feedback functionsGn andGm synchronize a chaotic~hyper-
chaotic! system with its replica, will their superpositio
G5Gn1Gm synchronize the same system?~ii ! If G synchro-
nizes the system, how does its synchronization efficie
compare with those ofGn andGm? The questions are rel
evant, but their answers are not obvious. By consider
linear-linear, linear-nonlinear, and nonlinear-nonlinear co
binations of feedback functions, we provide numerical e
dence thatG5G11G21•••1Gn synchronizes a chaotic
~hyperchaotic! system if each of theGi ,i51,2, . . . ,n syn-
chronizes the system independently andG is not less effi-
cient than any of theGi , i51,2, . . . ,n. Our observation is
valid for at least a class of systems some members of wh
we have studied numerically.

II. VARIABLE FEEDBACK CONTROL

In this section, a brief description of the method of va
able feedback control is given. Let us consider tw
n-dimensional autonomous dynamical systems described
the differential equations

Ẋ5F~X!, ~1!

Ẏ5F~Y!1G~X,Y!. ~2!

Here the state vectorsX,YPV(Rn) aren-dimensional vec-
tors with componentsX1 ,X2 , . . . ,Xn and Y1 ,Y2 , . . . ,Yn ,
respectively. The vector functionsF andG have the compo-
nents F1 ,F2 , . . . ,Fn and G1 ,G2 , . . . ,Gn , respectively.
The dynamical system of Eq.~1! is variably called the driver,
master, or sender system, while the system of Eq.~2! is
called the response, slave, or receiver system. The func
F(Y) is a replica of the functionF(X) andG(X,Y) is called
5285 © 1997 The American Physical Society
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TABLE I. Examples of feedback functions for synchronizing the Ro¨ssler system. The response system
equations~12!–~14! will synchronize with the driver system of equations~9!–~11! when the feedback func
tions G1 , G2, andG3 from any row are used. The synchronization timet provides a measure of th
efficiency of the corresponding set of feedback functions.

G1 G2 G3 t

Y2@(Y22X2)2(Y12X1)# (Y12X1)2(Y22X2) 0 43
3@(Y22X2)1(Y32X3)#

2(Y1Y22X1X2) 0 0 150
2(Y12X1)2(Y22X2)

0 2(Y32X3) 0 23
0 0 20.45(Y32X3) 78
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the feedback function. The dynamics of theX andY systems
are started from different initial conditions@Y(t50)
ÞX(t50)#. Synchronization between the driver and r
sponse systems is said to be achieved@4,5# if the dynamical
system describing the time evolution of the differen
e5Y2X,

ė5F~Y!1G~X,Y!2F~X!

5F~X1e!1G~X,X1e!2F~X!, ~3!

has a stable fixed point ate50. Another way of saying this is
that we achieve synchronization ifiY2Xi→0 and
G(X,Y)→0 as t→`. For the response system to synchr
nize, it is necessary that all of its Lyapunov exponents~con-
ditional Lyapunov exponents! are negative@1,2#. Let dY be a
small change inY. Then in the linear approximation we hav
the variational equation

ddY

dt
5¹Y@F„Y…1G„X,Y!] •dY. ~4!

Here¹Y represents the gradient with respect toY. For com-
puting the Lyapunov exponents of the response system,
~1!, ~2!, and ~4! are solved simultaneously. The above sy
chronization conditions can be satisfied by a very large nu
ber of linear @6,15–20# and nonlinear functional forms o
G(X,Y). Pyragas @15# has usedGi5k(Yi2Xi), where
k is suitably chosen. Penet al. @6# have used
G(X,Y)5A(Y2X), whereA is a matrix. These forms o
G(X,Y) provide linear feedback. However,G(X,Y) does
not have to be restricted to linear forms and we show be
that linear as well as nonlinear forms of the feedback fu
tion are effective in synchronizing chaotic and hyperchao
systems. Recently, Parlitzet al. have used an active
passive decomposition scheme for synchronization@4,5#.
This scheme involves decomposing the dynamical syst
as

Ẋ5F~X,s!, ~5!

Ẏ5F~Y,s!, ~6!

s5h~X!, ~7!

ṡ5h~X,s!. ~8!
-

-

qs.
-
-

w
-
c

s

Mathematically, this decomposition scheme is included
our approach if we chooseG(X,Y)5F(Y,s)2F(Y). Parlitz
et al. @5# have shown the mathematical equivalence betw
their decomposition scheme and the approaches of Pe
and Carroll@1,2#. Therefore, the feedback scheme of Eqs.~1!
and ~2! not only includes the approaches just mentioned
also has the flexibility of introducing new feedback functio
and thus giving robustness to the method of feedback c
trol. The evidence is that a dynamical system can be s
chronized by a variety of choices of the feedback funct
G(X,Y). The important question about how to find all o
them from a single general method is still unanswered.
cause of the robustness of the method, it does not seem
hard to find some feedback functions for a given system
trial and error.

III. MODEL DYNAMICAL SYSTEMS

In this section we present some of the dynamical syste
that we have considered.

A. Chaotic systems

1. The Rössler system

The well-known Ro¨ssler attractor~Lyapunov spectrum
0.11,0.00,23.21) @10# and its response systems are describ
by

Ẋ15F1~X!521X1~X224!, ~9!

Ẋ25F2~X!52X12X3 , ~10!

Ẋ35F3~X!5X210.45X3 , ~11!

Ẏ1521Y1~Y224!1G1~X,Y!, ~12!

Ẏ252Y12Y31G2~X,Y!, ~13!

Ẏ35Y210.45Y31G3~X,Y!. ~14!

Recently, Parlitzet al. @5# have considered examples o
active-passive decompositions of this system. These sam
decompositions correspond to a set of feedback functi
Gi(X,Y), i51,2,3, which are given in Table I. It can b
seen from the table that linear as well as linear-nonlin
feedback injected at one or more than one site can sync



b

n-

ack
ack
in
ec.
nd
-

ns
nc
em

-
in

g
d

g
e
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nize the systems. In addition to the feedback functions, Ta
I also contains the ‘‘synchronization time’’t, which is taken
here as the time required ford5A@( i(Yi2Xi)#

2 to reduce to
1310210. t is used here only for studying relative efficie

TABLE II. Examples of linear and nonlinear feedback functio
for synchronizing the Lorenz system. Any set of the feedback fu
tions chosen from any column will synchronize the Lorenz syst
with its replica. The approximate lower boundsl of the coupling
parametersKi

m are given.t ~see the Ro¨ssler system for the defini
tion! provides a measure of the efficiency of the correspond
choice ofG1 , G2, andG3.

2G1(G25G350) 2G2(G15G350) 2G3(G15G250)

K1
1(Y12X1) K2

1(Y12X1) K3
1(Y32X3)

8; l,K1
1 6.5; l,K2

1 2,K3
1

K1
159, t529 K2

159, t57 K3
159, t54

K1
2(Y22X2) K2

2(Y22X2)
5; l,K1

2 3; l,K2
2

K1
259, t58 K2

259, t54
K1
3sin(Y12X1) K2

3sin(Y12X1)
8; l,K1

3 6.5; l,K2
3

K1
359, t529 K2

359, t57
K1
4sin(Y22X2) K2

4sin(Y22X2) K3
2sin(Y32X3)

5; l,K1
4 3; l,K2

4 2; l,K3
2

K1
459, t58 K2

459, t54 K3
259, t54

K1
5tanh(Y12X1) K2

5tanh(Y12X1)
8; l,K1

5 7; l,K2
5

K1
559, t521 K2

559, t57
K1
6tanh(Y22X2) K2

6tanh(Y22X2) K3
3tanh(Y32X3)

5; l,K1
6 3; l,K2

6 2; l,K3
3

K1
659, t58 K2

659, t54 K3
359, t54

TABLE III. Examples of feedback functions for synchronizin
the Van der Pol–Duffing oscillator. The approximate lower boun
l of the coupling parametersKi

m are given. See the Ro¨ssler system
for the definition oft.

2G1(G25G350) 2G2(G15G350) 2G3(G15G250)

K1
1(Y12X1) K2

1(Y12X1) K3
1(Y32X3)

74; l,K1
1 0.84; l,K2

1 3,K3
1,80

K1
1580, t5248 K2

150.9, t549 K3
153.5, t515

K1
2(Y22X2) K2

2(Y22X2)
83; l,K1

2 3.5; l,K2
2

K1
2585, t5236 K2

254, t516
K1
3sin(Y12X1) K2

3sin(Y12X1)
75; l,K1

3 0.85; l,K2
3

K1
3580, t5268 K2

350.9, t576
K1
4sin(Y22X2) K2

4sin(Y22X2)
84; l,K1

4 3.5; l,K2
4

K1
4585, t5140 K2

454, t517
K1
5tanh(Y12X1) K2

5tanh(Y12X1)
80; l,K1

5 0.84; l,K2
5

K1
5581, t5300 K2

550.9, t5113
K1
6tanh(Y22X2) K2

6tanh(Y22X2) K3
6tanh(Y32X3)

84; l,K1
6 3; l,K2

6 5; l,K3
6

K1
6585, t5153 K2

654, t517 K3
656, t520
le

cies of different feedback functions. As fort for these
sample feedback functions, the linear-nonlinear feedb
functions do not have an advantage over the linear feedb
functions. But for our present work we are interested
knowing that a variety of feedback functions exists. In S
IV, we will linearly superpose these feedback functions a
study the resulting function from the point of view of syn
chronization.

2. The Lorenz system

In the Lorenz system

Ẋ1510~2X11X2!, ~15!

-

g

s

TABLE IV. Examples of feedback functions for synchronizin
the Lorenz–Van der Pol–Duffing oscillator. Any set of th
Gi , i51,2, . . . ,6 from the categoriesA, B, C, andD will syn-
chronize this hyperchaotic system. For the definition oft see the
Rössler attractor.

Category Function

A G25G35G55G650
G152K(Y12X1), G452K(Y42X4), K.70,

t593 whenK5100
G152Ksin(Y12X1), G452Ksin(Y42X4), K.70,

t594 whenK5100
G152Ktanh(Y12X1), G452Ktanh(Y42X4), K.70,

t592 whenK5100
G152K(Y12X1), G452Ksin@0.25(Y42X4)#,

t593 whenK5100

B G25G35G45G650
G152K(Y12X1), G552K(Y52X5), K.70,

t596 whenK5100
G152Ksin(Y12X1), G552Ksin(Y52X5), K.70,

t596 whenK5100
G152Ktanh(Y12X1), G552Ktanh(Y52X5), K.70,

t597 whenK5100

C G15G35G55G650
G252K(Y22X2), G452K(Y42X4), K.10,

t513 whenK515
G252Ksin(Y22X2), G452Ksin(Y42X4), K.8,

t513 whenK515
G252Ktanh(Y22X2), G452Ktanh(Y42X4), K.8,

t513 whenK515
G252Ktanh@5(Y22X2)#, G452Ktanh@5(Y42X4)#,

t511.5 whenK510

D G15G35G45G650
G252K(Y22X2), G552K(Y52X5), K.3,

t527 whenK55
G252Ksin(Y22X2), G552Ksin(Y52X5), K.3,

t529 whenK55
G252Ktanh(Y22X2), G552Ktanh(Y52X5), K.3,

t533 whenK55
G252Ktanh@5(Y12X1)#, G552Ktanh@5(Y52X5)#,

t52.5 whenK510
G252Ksin@15(Y22X2)#, G552Ktanh@5(Y42X4)#,

t54.5 whenK55
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TABLE V. Examples of superpositions of feedback functions for the Ro¨ssler attractor.

G1 G2 G3 t

Y2@(Y22X2)2(Y12X1)# (Y12X1)2(Y22X2) 20.45(Y32X3) 23
Y2@(Y22X2)2(Y12X1)# (Y12X1)2(Y22X2)
13@(Y22X2)1(Y32X3)# 2(Y12X1)2(Y22X2) 20.45(Y32X3) 8

2(Y1Y22X1X2) 2(Y32X3)
3@(Y22X2)1(Y32X3)# 2(Y12X1)2(Y22X2)

2(Y1Y22X1X2) 2(Y32X3) 0 10
2(Y12X1)2(Y22X2)

0 2(Y32X3) 20.45(Y32X3) 15
Y2@(Y22X2)2(Y12X1)# (Y12X1)2(Y22X2)
13@(Y22X2)1(Y32X3)# 2(Y12X1)2(Y22X2) 0 16

2(Y1Y22X1X2) 2(Y32X3)
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Ẋ252X1X3128X12X2 , ~16!

Ẋ35X1X22
8

3
X3 . ~17!

The Lyapunov exponents of this well-studied system
0.91, 0.00, and214.57 and theY system is written the sam
way as in the case of the Ro¨ssler system. Recently, Malesc
@13# has studied synchronization of the Lorenz system us
Ẋ1510(X12X2). This difference in the sign ofF1 does af-
fect the choice of some synchronization functions. Examp
of linear and nonlinear feedback functions that synchron
this system are given in Table II.

3. The Van der Pol–Duffing oscillator

In the Van der Pol–Duffing system

Ẋ152100~X1
320.35X12X2!, ~18!

Ẋ25X12X22X3 , ~19!

Ẋ35450X3 . ~20!

This chaotic system~Lyapunov exponents 1.29, 0.00, an
249.41) has been studied@11,12# in connection with signal
transmission by chaos synchronization. We provide in Ta
III examples of linear and nonlinear feedback functions a
the correspondingt for this system.

B. Hyperchaotic system:
The Lorenz–Van der Pol–Duffing system

For a hyperchaotic system, we consider the Lorenz–V
der Pol–Duffing~LVPD! system, which is obtained by cou
pling the Van der Pol–Duffing@11# and Lorenz systems as

Ẋ152100~X1
320.35X12X2!, ~21!

Ẋ25X12X22X3 , ~22!

Ẋ35450X210.1X4 , ~23!

Ẋ4510~2X41X5!, ~24!
e

g
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e
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d
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Ẋ552X4X6128X42X5 , ~25!

Ẋ65X4X52
8

3
X6 . ~26!

The Lyapunov spectrum for this system is 1.14, 0.91, 0.
20.02,214.57, and248.77. Table IV contains examples o
linear and nonlinear feedback functions for synchroniz
this hyperchaotic system. Although the LVPD system
formed by coupling the Lorenz and Van der Pol–Duffin
systems, not all combinations of the feedback functions t
synchronize the Van der Pol–Duffing and the Lorenz s
tems separately are suitable for synchronizing the LVPD s
tem.

IV. SUPERPOSITION OF FEEDBACK FUNCTIONS

Having examples of linear and nonlinear feedback fu
tions for chaotic and hyperchaotic systems~Tables I–IV!, we
examine their behaviors in superposition. First consider
Rössler system. From the feedback functions given in Ta
I, we construct ~by linear superposition! the functions
G1 , G2 , andG3, which are given in Table V. Our numerica
results show~see Table V! that these superposed function
are the new feedback functions~constructed from the old
ones!. By feedback functions we mean functions that yie
stable fixed point ate50 for the time evolution of the dif-
ferencee5Y2X @see Eq.~3!#. It is interesting to note tha
the synchronization timet for any of the superposed feed
back functions is shorter than that for any of its componen
This behavior oft is observed in all the chaotic and hype
chaotic systems that we have studied. For example, cons
the Van der Pol–Duffing oscillator. Column 1 of Table I
shows that the minimumt of the six choices ofG1 is 153. If
we superpose the six functions we obtain a newG1 given by

G1580~Y12X1!185~Y22X2!180 sin~Y12X1!

185 sin~Y22X2!181 tanh~Y12X1!

185 tanh~Y22X2!. ~27!

The synchronization time for this newG1 (G25G350) is
t518, which is shorter than the minimumt5153 for its
components. For another example, let us consider the hy
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chaotic LVPD system. From groupsA andC in Table IV, let
us consider the two sets of feedback functio
G152K(Y12X1), G250, G350, G452K(Y42X4),
G55G650 and G150, G252K(Y22X2), G350,
G452K(Y42X4), G55G650. For the first setK.70
and t593 whenK5100 while for the second setK.10
and t513 whenK515. If we superpose these two se
we find G152K(Y12X1), G252K(Y22X2), G350,
G452K(Y42X4), G55G650. This new set of functions
synchronizes the hyperchaotic system forK.10 andt512
whenK515. Thist is shorter than thet513 of the second
set. Another point to note here is that the superposed fe
back function synchronizes the hyperchaotic system
K.10, although one of its components~the first set! syn-
chronizes only whenK.70. Thus the superposition of feed
back functions has affected the synchronization time as w
as the coupling constant. We obtained similar results in
study of the hyperchaotic Chua circuit@21#. Figure 1 shows a
comparison of synchronization efficiencies of~i! a linear
feedback function,~ii ! a nonlinear feedback function, an
~iii ! a feedback function obtained by linear superposition
the functions of~i! and ~ii !. It can be seen that the feedba
function of~iii ! is the fastest compared to the those of~i! and
~ii !.

What we have seen here is that superpositions of kno
feedback functions give new feedback functions for synch

FIG. 1. Comparison of the synchronization timet of three
feedback functions for the LVPD system. Heret is taken as
the time required ford5A@( i(Yi2Xi)#

2 to reduce to 1310210.
For all curves in the figure,G15G35G45G650. Curves•••,
222, and respectively represent the linear feedback fun

tions G25210(Y22X2) and G55210(Y52X5), the nonlinear
feedback functions G25210 tanh@5(Y12X1)# and G5

5210 tanh@5(Y52X5)#, and the superposed feedback functio
G25210(Y22X2)210 tanh@5(Y12X1)# and G55210(Y52X5)
210 tanh@5(Y52X5)#. It can be seen that the superposed feedb
function is more efficient than its components.
s

d-
r

ll
r

f

n
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nizing chaotic and hyperchaotic systems. There may be
objection to obtaining feedback functions by superpositio
Consider, for example, Table V of the Ro¨ssler system. This
table shows that some superpositions imply injecting
feedback to more than the minimum number of sites nec
sary for synchronizing this system. From an experimen
point of view this may not be very appealing. However, b
yond our current experimental limitations and interests, th
are situations where the main concern regarding synchr
zation may be different from the requirement of the min
mum number of such sites. For example, it is quite poss
that the criteria for synchronization in biological neural ne
works are different from those for secure communication

V. DISCUSSION AND CONCLUSIONS

In this work we have studied synchronization of chao
and hyperchaotic systems using linear and nonlinear fe
back functions and their superpositions. For a model hyp
chaotic system, we have introduced a six-dimensional s
tem by coupling the Lorenz and Van der Pol–Duffin
systems. This hyperchaotic system has two posit
Lyapunov exponents and we have shown that it can be s
chronized by applying linear and nonlinear feedback. Co
paring the efficiencies~values oft) of linear and nonlinear
feedback functions that we have considered, we do not
any real advantage of one form over the other. However,
have not found all the nonlinear feedback functions for o
systems and hence we are unable to make a precise ju
ment about the relative merits of linear and nonlinear fe
back functions. Further work needs to be done. As for s
chronizing chaotic versus hyperchaotic systems, we did
need different approaches based on the number of pos
Lyapunov exponents. Since a variety of feedback functio
can synchronize a given chaotic~hyperchaotic! system, we
have studied their superpositions from the point of view
synchronizing the same system. Our numerical results for
cases that we have studied show that functions obtained
superposition of known feedback functions do synchron
the same system and they are not less efficient than t
components. We have also shown that the superposed f
back functions are effective in bringing synchronization w
parameter values that are not suitable for some of its c
ponents.

ACKNOWLEDGMENTS

This research has been supported by a NSERC~Canada!
grant ~M.K.A.!. This work was also supported by fundin
from National Nuclear Industry Science Foundation of Ch
and China National Project of Science and Technology
Returned Student in Non-Education System~J.-Q.F.!.
J.-Q.F. wishes to thank the Department of Physics of
University of Lethbridge for its hospitality.

-

k

s.
@1# L. Pecora and T. Carroll, Phys. Rev. Lett.64, 1196~1990!.
@2# T. Carroll and L. Pecora, IEEE Trans. Circuits Syst.38, 453

~1991!.
@3# Jin-Qing Fang, Chin. Sci. Bull.40, 988 ~1995!.
@4# L. Kocaver and U. Parlitz, Phys. Rev. Lett.74, 5028 ~1995!;
77, 2206~1996!.

@5# U. Parlitz, L. Kocarev, T. Stojanovski, and H. Preckel, Phy
Rev. E53, 4351~1996!.



tt ev.

.

5290 55M. K. ALI AND JIN-QING FANG
@6# J. H. Pen, E. J. Ding, M. Ding, and W. Yang, Phys. Rev. Le
76, 904 ~1996!.

@7# T. Shinbrot, Adv. Phys.44, 173 ~1995!.
@8# G. Hu, Z. Qu, and K. He, Int. J. Bifurc. Chaos5, 901

~1995!.
@9# Jin-Qing Fang, Prog. Phys.16, 1 ~1996!; 16, 137 ~1996!.
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