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Synchronization of chaos and hyperchaos using linear and nonlinear feedback functions
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Using the method of variable feedback, synchronization of chaotic and hyperchaotic systems is presented.
The robustness of the method based on the flexibility of choices of feedback functions is exemplified. Linear
and nonlinear feedback functions and their linear superpositions are used for synchronization. Calculations
with model systems indicate that functions constructed by linear superposition of feedback functions that
independently synchronize a system are more efficient in achieving synchronization than the functions from
which they are made. We have not noticed any difference in the technique of synchronization based on the
number of positive Lyapunov exponenf§1063-651X97)09605-0

PACS numbds): 05.45:+b, 89.70+c, 43.72+(q, 47.52:+]

[. INTRODUCTION study synchronization of chaos and hyperchaos using the
method of variable feedback control. So far, this method has
Quite recently, synchronization of chaos and hyperchaobeen used primarily with linear feedback functions. We fo-
has received increasing attention from foundational as weltus on linear and and nonlinear feedback functions and their
as applied points of vieyl—9]. Systems with more than one Superposition. Since feedback functions are not unique, one
positive Lyapunov exponent are called hyperchaéfi6]. ~ May ask questions such as the followirig: If two vector
For bounded flows, chaos and hyperchaos can exist only feedback function§, andG,, synchronize a chaotidyper-
the minimum dimensions of dynamical systems are 3 and 4£haotio system with its replica, will their superposition
respectively. Examples of systems having chaos and hypefs=G,+G,, synchronize the same systeii? If G synchro-
chaos can be found in systerfis—14] such as arrays of Nizes the system, how does its synchronlzgtlon efficiency
Josephson junctions, coupled electric oscillators, artificiaFompare with those o6, andG,? The questions are rel-
neural networks, arrays of chaotic systems, multimode la€vant, but their answers are not obvious. By considering
sers, and coupled map lattices. The importance of a propéi,near-linear, linear-nonlinear, and nonlinear-nonlinear com-
understanding of control and synchronization of chaotic sysbinations of feedback functions, we provide numerical evi-
tems originates from the fact that in the classical world chao§lence thatG=G;+G,+---+G, synchronizes a chaotic
is ubiquitous. Synchronization of chaos has been studied ifhyperchaotig system if each of th&,; ,i=1,2,...,n syn-
the light of technical applications such as secure communichronizes the system independently @ds not less effi-
cations[1,2,4—4. It is very likely that control and synchro- cient than any of th&;, i=1,2,...,n. Our observation is
nization of chaos and hyperchaos play important roles in th¥alid for at least a class of systems some members of which
workings of biological and artificial neural networks. Al- We have studied numerically.
though some progress has been made, an all-embracing uni-
fied method for synchronization of chaos and hyperchaos is Il. VARIABLE FEEDBACK CONTROL
missing. Kocarev and Parlitz,5] and Penet al. [6] have . , . o )
recently studied synchronization of high-dimensional sys- N this section, a brief description of the method of vari-
tems in which the transmitted signal is hyperchaotic. It is2P!e feedback control is given. Let us consider two
believed that communications via hyperchaotic signals ar@-dimensional autonomous dynamical systems described by
more secure and the procedure relates to the design of corifté differential equations
munication schemes. Synchronization of hyperchaotic sys-

tems has therefore become a new area of active research. X=F(X), ey
One way to construct hyperchaotic systems is to couple low- )
dimensional chaoti¢hyperchaotit systemg4,5,11]. A sys- Y=F(Y)+G(X,Y). 2

tem built by coupling simpler chaotityyperchaotit systems

may behave5] as a single chaotic or hyperchaotic systemHere the state vectos,Y e V(R") are n-dimensional vec-
with new and rich dynamic behavior or it may behave astors with components(;,X,, ... X, andYy,Y,, ... ,Y,,
clusters of chaotiqdhyperchaotit systems or it may even respectively. The vector functiorisandG have the compo-
exhibit the behaviors of an assembly of individual chaoticnents F,,F,, ... F, and G;,G,, ...,G,,, respectively.
(hyperchaotit systems. Quite often, a complex physical or The dynamical system of E{L) is variably called the driver,
biological system can be described in terms of the behaviormaster, or sender system, while the system of €9.is

of simpler chaotiaqhyperchaotif systems through a mecha- called the response, slave, or receiver system. The function
nism dubbeddynamic dissipatiorj7,11]. In this work, we F(Y) is a replica of the functiofr(X) andG(X,Y) is called
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TABLE I. Examples of feedback functions for synchronizing thesfter system. The response system of
equationg12)—(14) will synchronize with the driver system of equatiof®—(11) when the feedback func-
tions G;, G,, and G; from any row are used. The synchronization timeprovides a measure of the
efficiency of the corresponding set of feedback functions.

Gl GZ G3 T
Yol (Y2=X2) = (Y1—Xy)] (Y1=X1) = (Y2—Xp) 0 43
3[(Y2—X2) +(Y3—X3)]
- (Y]_Yz_ XlXZ) 0 O 150
—(Y1=X) = (Y2—X2)
0 —(Y3—X3) 0 23
0 0 —0.45(Y3—X3) 78

the feedback function. The dynamics of teandY systems Mathematically, this decomposition scheme is included in
are started from different initial condition§Y(t=0)  our approach if we choosB(X,Y)=F(Y,s)—F(Y). Parlitz
#X(t=0)]. Synchronization between the driver and re-€t al.[5] have shown the mathematical equivalence between
sponse systems is said to be achief#d] if the dynamical their decomposition scheme and the approaches of Pecora
system describing the time evolution of the differenceand Carrol[1,2]. Therefore, the feedback scheme of Hgs.

e=Y—X, and (2) not only includes the approaches just mentioned but
also has the flexibility of introducing new feedback functions
e=F(Y)+G(X,Y)—F(X) and thus giving robustness to the method of feedback con-
trol. The evidence is that a dynamical system can be syn-
=F(X+e)+G(X,X+e) —F(X), (3)  chronized by a variety of choices of the feedback function

G(X,Y). The important question about how to find all of
has a stable fixed point at=0. Another way of saying thisis them from a single general method is still unanswered. Be-
that we achieve synchronization iflY—XIl—0 and cause of the robustness of the method, it does not seem to be
G(X,Y)—0 ast—o. For the response system to synchro-hard to find some feedback functions for a given system by
nize, it is necessary that all of its Lyapunov expondnts-  trial and error.
ditional Lyapunov exponenksire negativél,2]. Let Y be a
small change irY. Then in the linear approximation we have Il. MODEL DYNAMICAL SYSTEMS

the variational equation _ _ _
In this section we present some of the dynamical systems

dsy that we have considered.
W=VY[F(Y)+G(X,Y)]-5Y. (4)

A. Chaotic systems
HereVy represents the gradient with respectrtoFor com-
puting the Lyapunov exponents of the response system, Egs. ~
(1), (2), and(4) are solved simultaneously. The above syn- The well-known Resler attractor(Lyapunov spectrum
chronization conditions can be satisfied by a very large num0.11,0.00;-3.21)[10] and its response systems are described
ber of linear[6,15—-2Q and nonlinear functional forms of by
G(X,Y). Pyragas[15] has usedG;=k(Y;—X;), where

1. The Rasler system

k is suitably chosen. Penetal. [6] have used X1=F1(X)=2+X1(X;—4), 9
G(X,Y)=A(Y—X), whereA is a matrix. These forms of )

G(X,Y) provide linear feedback. HoweveG(X,Y) does Xo=F5(X)=—X;—X3, (10
not have to be restricted to linear forms and we show below

that linear as well as nonlinear forms of the feedback func- X3=F3(X)=X,+0.453, (17
tion are effective in synchronizing chaotic and hyperchaotic

systems. Recently, Parlitet al. have used an active- Y1=2+Y4(Y,— 4)+ Gy(X,Y), (12

passive decomposition scheme for synchronizafidrg].
This scheme involves decomposing the dynamical systems :
as Yo==Y1= Y3+ Gy(X,Y), (13

X=F(X,9), (5) Y3=Y,+0.45¢53+ G5(X,Y). (14)

Recently, Parlitzet al. [5] have considered examples of
active-passive decompositions of this system. These sample
decompositions correspond to a set of feedback functions
s=Nh(X), () Gi(X,Y), i=1,2,3, which are given in Table I. It can be
_ seen from the table that linear as well as linear-nonlinear
s=h(X,s). (8) feedback injected at one or more than one site can synchro-

Y=F(,s), (6)
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TABLE Il. Examples of linear and nonlinear feedback functions
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TABLE IV. Examples of feedback functions for synchronizing

for synchronizing the Lorenz system. Any set of the feedback functhe Lorenz—Van der Pol-Duffing oscillator. Any set of the
tions chosen from any column will synchronize the Lorenz systemG;, i=1,2,...,6 from the categorie®\, B, C, and D will syn-

with its replica. The approximate lower bound®f the coupling
parameterK# are given.r (see the Rssler system for the defini-
tion) provides a measure of the efficiency of the corresponding

chronize this hyperchaotic system. For the definitionrafee the
Rossler attractor.

choice ofG,, G,, andGs,. Category Function
~G1(G2=Gg=0) —Gy(G1=G3=0) —Gg(G1=G,=0) A G2=Gs=Gs= G0
Gi=—K(Y1=X1), Gy=—K(Y,—X,), K>70,
K1(Y1=Xy) Ka(Y1—Xy) K3(Ys—X3) 7=93 whenK =100
8~1<Ki 6.5~ 1<K} 2<K} G,=—Ksin(Y;—X,), G,=—Ksin(Y,—X,), K>70,
Ki=9, r=29 Ki=9, =7 K3=9, r=4 =94 when K =100
K2(Y,—Xy) K3(Y,—Xy) G,=—Ktanh(Y;—X;), G,=—Ktanh{Y,—X,), K>70,
5~1<K? 3~1<K3 7=92 whenK =100
K%:gy 7-:8 |<%:9l =4 G1=—K(Y1—Xl), G4=—KSIF[025(Y4—X4)],
K3sin(Y;—Xy) K3sin(Y,—X,) 7=93 whenK=100
8~1<K3 6.5~1<K3
K3=9, r=29 K3=9, =7 B Gy=G3=G4=Ge=0
K4Sin(Y,—Xo) KAsin(Y,—Xo) K2Sin(Ys—Xa) G1=—K(¥1=Xy), Gs=—K(Y5—Xs), K>70,
5~1<K? 3~1<K} 2~1<K2 o ke T_x% "(‘;hf”'(g_loo 70
Ki=9, 7=8 K3=9, =4 K5=9, 7=4 1= ~Ksin(Yy=Xy), Gs=—Ksin(Ys=Xs), K>70,
KStanh(y,—X,) KStanh(Y,—X,) 7=96 whenK =100
81|<K51 27~|<1K5 G;=—Ktanh(;—X;), Gs=—Ktanh(fs—Xz), K>70,
5 1 5 2 7=97 whenK =100
K1:9, =21 K2:91 =7
Kitanhogz—xz) thanh(Yz—GXZ) thanh(v3—3x3) c Gy=Gy=Gg=Gg=0
5~1<K$ 3~1<KS 2~1<K G —K(YaoXo). Gam — K(Y.—X.) K
6_ _ 6__ - 3 _ 2™ ( 2 2)! 4= ( 4 4)1 >10,
Ki=9, 7=8 K5=9, 7=4 K3=9, r=4 7=13 whenK=15

GZZ _Ksin(Yz_Xz), G4:_Ksin(Y4_X4), K>8,
7=13 whenK=15

nize the systems. In addition to the feedback functions, Table
| also contains the “synchronization time#, which is taken
here as the time required fde= \[=;(Y;— X;)]? to reduce to
1x1071% 7 is used here only for studying relative efficien-

TABLE lll. Examples of feedback functions for synchronizing
the Van der Pol-Duffing oscillator. The approximate lower bounds
| of the coupling parameteis! are given. See the Reler system
for the definition ofr.

G,=—Ktanh{r,—X,), G,=—Ktanh{r,—X,), K>8,
7=13 whenK=15
Gy=—Ktani5(Y;—Xp)], Gs=—Ktani5(Y,—X,)],
7=11.5 whenK=10

G]_:G3:G4:Ge,:0
GZZ - K(Yz_XZ), G5: - K(YS_XS), K>3,
7=27 whenK=5

—G1(G,=G3=0) —Gy(G1=G3=0) —G3(G;=G;,=0)
Ki(Y1—X1) K3(Y1—X1) K3(Ya—Xs)
74~1<K} 0.84~1<K} 3<K3<80
K1=80, r=248 K3=0.9, 7=49  K}=35, =15
Ki(Y2—Xy) K3(Y2—Xy)

83~1<K? 3.5~1<K3

K%=85, r=236 K2=4, 7=16

K3sin(Y;—Xy) K3sin(Y;—Xy)

75~1<K} 0.85~1<K3

K3=80, r=268 K3=0.9, =76

Kisin(Y,—X,) K3sin(Y,—X,)

84~1<Kj 3.5~1<Kj3

K}=85, r=140 K3=4, 7=17

K3tanh(Y;—Xy) K3tanh(Y;—X,)

80~1<K3 0.84~1<K3

K3=81, 7=300 K3=0.9, =113

KStanh(Y,—X,) KStanh(Y,—X5) KStanh(Y;—X3)
84~1<K$ 3~1<KS$ 5~1<KS$
K$=85, r=153 KS=4, r=17 K$=6, 7=20

G,=—Ksin(Y,—X,), Gs=—Ksin(Y5—Xs), K>3,
=29 whenK=5
G,=—Ktanh({r,—X,), Gs=—Ktanh({5—Xs), K>3,
7=33 whenK=5
G=—Ktani5(Y;—Xy)], Gs=—Ktanf5(Y5—Xs)],
7=2.5 whenK=10
Gy=—Ksin15(Y;—X3)], Gs=—Ktani5(Y,—X,)],
7=4.5 whenK=5

cies of different feedback functions. As far for these
sample feedback functions, the linear-nonlinear feedback
functions do not have an advantage over the linear feedback
functions. But for our present work we are interested in
knowing that a variety of feedback functions exists. In Sec.
IV, we will linearly superpose these feedback functions and
study the resulting function from the point of view of syn-
chronization.

2. The Lorenz system

In the Lorenz system

X;=10(— X1+ X,), (15)
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TABLE V. Examples of superpositions of feedback functions for thedRer attractor.

G, G, G, r
Yol (Yo—=X3) = (Y1—X1)] (Y1=X1) = (Y2—X3) —0.45(Y3—X3) 23
Yol (Yo—=X3) = (Y1—X1)] (Y1=X1) = (Y2—X3)
+3[(Y2=X2) +(Y3—X3)] = (Y1=Xp) = (Y2—Xy) —0.45(Y3—X3) 8
= (Y1Y2=X1X3) —(Y3—X3)
3[(Y2—X5)+(Y3—X3)] —(Y1= X)) = (Y2—Xy)
—(Y1Y2—=X1X3) —(Y3—X3) 0 10
—(Y1=X9) = (Y= Xy)
0 —(Y3—X3) —0.45(Y3—X3) 15
Yol (Yo—=X3) = (Y1—X1)] (Y1=X1) = (Y2=X3)
+3[(Y2=X2) +(Y3—X3)] —(Y1=Xp) = (Y2—Xy) 0 16
= (Y1Y2=X1X3) —(Y3=X3)
Xo=—X;X3+28X;—X,, (16) Xs=— X Xg+28X,— Xs, (25)
. 8 . 8
X=X X5— §X3. (17 Xg=X4X5— §X6. (26)

The Lyapunov exponents of this well-studied system areThe Lyapunov spectrum for this system is 1.14, 0.91, 0.00,
0.91, 0.00, and-14.57 and thé¥ system is written the same —0.02,—14.57, and—48.77. Table IV contains examples of
way as in the case of the Bsler system. Recently, Malescio linear and nonlinear feedback functions for synchronizing
[13] has studied synchronization of the Lorenz system usinghis hyperchaotic system. Although the LVPD system is
X;=10(X,—X,). This difference in the sign df, does af- formed by coupling the Lorenz and Van der Pol-Duffing
fect the choice of some synchronization functions. Example§ystems, not all combinations of the feedback functions that
of linear and nonlinear feedback functions that synchronizéynchronize the Van der Pol-Duffing and the Lorenz sys-
this system are given in Table L. tems separately are suitable for synchronizing the LVPD sys-
tem.

3. The Van der PolDuffing oscillator
In the Van der Pol-Duffing system IV. SUPERPOSITION OF FEEDBACK FUNCTIONS

Having examples of linear and nonlinear feedback func-

Xy=- 10((Xf— 0.3~ Xa), (18 tions for chaotic and hyperchaotic systefmables 1-1\), we
) examine their behaviors in superposition. First consider the
Xo=X1—=Xy— X3, (19  Rossler system. From the feedback functions given in Table
I, we construct (by linear superposition the functions
X3=4505. (20) G, G,, andGg, which are given in Table V. Our numerical

results show(see Table VY that these superposed functions
This chaotic systenfLyapunov exponents 1.29, 0.00, and are the new feedback functiofsonstructed from the old
—49.41) has been studi¢d1,12 in connection with signal ones. By feedback functions we mean functions that yield
transmission by chaos synchronization. We provide in Tablatable fixed point ae=0 for the time evolution of the dif-
[l examples of linear and nonlinear feedback functions anderencee=Y —X [see Eq.(3)]. It is interesting to note that

the corresponding for this system. the synchronization time for any of the superposed feed-
back functions is shorter than that for any of its components.
B. Hyperchaotic system: This behavior ofr is observed in all the chaotic and hyper-
The Lorenz—Van der Pol-Duffing system chaotic systems that we have studied. For example, consider

For a hyperchaotic system, we consider the Lorenz—Vart1he Van der Pol-Duffing oscillator. Column 1 of Table Il

- o : shows that the minimum of the six choices 06, is 153. If
der Pol-Duffing(LVPD) system, which is obtained by cou- . . i 175>
pling the Van der Pol-Duffing11] and Lorenz systems as we superpose the six functions we obtain a i@pgiven by

G]_: 8qY1_ Xl) + 85(Y2_ Xz) +80 Sil’(Yl— Xl)

X1=—100X3-0.35¢; — X,), (22)
+85 sir(Y,— X) + 81 tank Y, — X;)
X=Xy = Xo = Xs, (22) +85 tanifY,— X,). 27)
X3=450X,+0.1X,, (23)  The synchronization time for this ne®; (G,=G3;=0) is

_ 7=18, which is shorter than the minimum= 153 for its
Xa=10(— X+ Xs), (24)  components. For another example, let us consider the hyper-
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_ _ _ nizing chaotic and hyperchaotic systems. There may be one
o 1 objection to obtaining feedback functions by superpositions.
1 Consider, for example, Table V of the Bler system. This
:.: ] table shows that some superpositions imply injecting the
" - feedback to more than the minimum number of sites neces-
1 sary for synchronizing this system. From an experimental
point of view this may not be very appealing. However, be-
yond our current experimental limitations and interests, there
are situations where the main concern regarding synchroni-
L 1 zation may be different from the requirement of the mini-
?{\\\ 1 mum number of such sites. For example, it is quite possible
0

10
t

— that the criteria for synchronization in biological neural net-
S S S S works are different from those for secure communications.

T V. DISCUSSION AND CONCLUSIONS

FIG. 1. Comparison of the synchronization timeof three In this work we have studied synchronization of chaotic
feedback functions for the LVPD system. Hereis taken as and hyperchaotic systems using linear and nonlinear feed-
the time required fod=\[=;(Y;—X;)]? to reduce to & 10~ back functions and their superpositions. For a model hyper-
For all curves in the figureG,;=G3;=G,=Gz=0. Curves- - -, chaotic system, we have introduced a six-dimensional sys-
———, and—respectively represent the linear feedback func-tem by coupling the Lorenz and Van der Pol-Duffing
tions G,=—10(Y,—X,) and Gg=—10(Ys—Xs), the nonlinear ~Systems. This hyperchaotic system has two positive
feedback  functions G,=—10 tanfi5(Y;—X;)] and Gg Lyapunov exponents and we have shown that it can be syn-
=—10tanti5(Ys—Xg)], and the superposed feedback functionschronized by applying linear and nonlinear feedback. Com-
G,=—10(Y,— X,)— 10 tani5(Y;—X;)] and Gg=—10(Y5— Xz) paring the efficienciegvalues ofr) of linear and nonlinear
—10 tanli5(Ys—Xs)]. It can be seen that the superposed feedbackeedback functions that we have considered, we do not see
function is more efficient than its components. any real advantage of one form over the other. However, we
have not found all the nonlinear feedback functions for our
chaotic LVPD system. From grougsandC in Table IV, let  systems and hence we are unable to make a precise judge-
us consider the two sets of feedback functionsment about the relative merits of linear and nonlinear feed-
G=—K(Y1—Xy), G,=0, G3=0, G4=—K(Ys—Xy), back functions. Further work needs to be done. As for syn-
Gs=Gz=0 and G,=0, G,=—K(Y,—X,), Gz=0, chronizing chaotic versus hyperchaotic systems, we did not
G,=—K(Y4—X,), Gs=Gg=0. For the first selk>70 need different approaches based on the number of positive
and 7=93 whenK =100 while for the second s&€>10 Lyapunov exponents. Since a variety of feedback functions
and 7=13 whenK=15. If we superpose these two setsCan synchronize a given chaotibyperchaotit system, we
we find G;=—K(Y;—X;), G,=—K(Y,—X,), G3=0, have studied their superpositions from the point of view of
G,=—K(Y,—X,), Gs=Gg=0. This new set of functions synchronizing the same system. Our numerical results for the
synchronizes the hyperchaotic system Kor10 andr=12  cases that we have studied show that functions obtained by
whenK = 15. This 7 is shorter than the= 13 of the second Ssuperposition of known feedback functions do synchronize
set. Another point to note here is that the superposed feedbe same system and they are not less efficient than their
back function synchronizes the hyperchaotic system fofomponents. We have also shown that the superposed feed-
K> 10, although one of its componentthe first set syn-  back functions are effective in bringing synchronization with
chronizes only whetk >70. Thus the superposition of feed- Parameter values that are not suitable for some of its com-
back functions has affected the synchronization time as welfPonents.
as the coupling constant. We obtained similar results in our
study of the hyperchaotic Chua circ{®1]. Figure 1 shows a
comparison of synchronization efficiencies @f a linear
feedback function(ii) a nonlinear feedback function, and  This research has been supported by a NSEB&hada
(ii ) a feedback function obtained by linear superposition ofgrant (M.K.A.). This work was also supported by funding
the functions of(i) and(ii). It can be seen that the feedback from National Nuclear Industry Science Foundation of China
function of(iii ) is the fastest compared to the thosdipand  and China National Project of Science and Technology for
(ii). Returned Student in Non-Education Systefd.-Q.F).
What we have seen here is that superpositions of knowd.-Q.F. wishes to thank the Department of Physics of the
feedback functions give new feedback functions for synchroUniversity of Lethbridge for its hospitality.

ACKNOWLEDGMENTS

[1] L. Pecora and T. Carroll, Phys. Rev. Led#, 1196(1990. [4] L. Kocaver and U. Parlitz, Phys. Rev. Le#4, 5028 (1995;
[2] T. Carroll and L. Pecora, IEEE Trans. Circuits Sy38, 453 77, 2206(1996.
(1991). [5] U. Parlitz, L. Kocarev, T. Stojanovski, and H. Preckel, Phys.

[3] Jin-Qing Fang, Chin. Sci. Bulk0, 988 (1995. Rev. E53, 4351(1996.



5290 M. K. ALI AND JIN-QING FANG 55

[6] J. H. Pen, E. J. Ding, M. Ding, and W. Yang, Phys. Rev. Lett.[14] K. Wiesenfeld, Pere Colet, and Steven H. Strogatz, Phys. Rev.

76, 904 (1996. Lett. 76, 404 (1996.
[7] T. Shinbrot, Adv. Phys44, 173 (1995. [15] K. Pyragas, Phys. Lett. A70 421(1992.
[8] G. Hu, Z. Qu, and K. He, Int. J. Bifurc. Chads 901 [16] G. Chen and X. Dong, IEEE Trans. Circuits Sy40, 591
(1995. (1993.
[9] Jin-Qing Fang, Prog. Phy46, 1 (1996; 16, 137 (1996. [17] G. Chen and X. Dong, Int. J. Bifurc. Cha@s705 (1992.
[10] O. E. Rassler, Phys. Lett71A, 155(1979. [18] L. O. Chua, L. Kocarev, K. Eckert, and M. Itoh, Int. J. Bifurc.
[11] Giemes and M. A. Mahas, Phys. Rev. B2, R2145(1995; 53, Chaos2, 705 (1992.
3059(1996. [19] Z. L. Qu, G. Hu, and B. K. Ma, Phys. Lett. A78 265(1993.
[12] K. Murali and M. Lakshmanan, Phys. Rev. 48, R1624  [20] He Kaifen and Hu Gang, Phys. Rev.53, 2271(1996.
(1993. [21] T. Kapitaniak and L. O Chua, Int. J. Bifurc. Chads 477

[13] G. Malescio, Phys. Rev. B3, 6566(1996. (1994.



